FPL Image Recognition for Pad Mounted Equipment

Team 304

Team Introductions

Presentation Outline

- Problem statement
- Concept generation
- Concept Selection
- Models & Diagrams
- Future Work
- Summary

Sponsor and Advisor

The Problem

The Problem

Key Challenges

Concept Generation

100 Concepts

100 Concepts: Hardware

	Top Hardware Concepts									
Power Source	Binary Input	Attachment Method	Signal Type	Materials						
Transformer	Power	Nuts & Bolts	Heater/Cooler	Stainless Steel						
Battery	RF	Polyurethane Sealant	LED source	Aluminum						
Solar	Signal Wires	Welding	Moveable Arm/Flag	Plastics						

100 Concepts: Software

	Top Software Concepts									
Input Type	Computer Language	Cloud Platform	Algorithm							
Images	MATLAB	Google Al	YOLOv4							
Videos	Python	Azure Al	YOLOv5							
Infrared	Javascript	Amazon Web Services (AWS)								

Biomimicry

Tree Function	Associated Function
Leaves (Change Color)	Beacon Identification (A light that changes colors)
Branches (Extend out of tree)	Beacon Functionality (An arm that extends out)
Bark (Weather protection)	Materials (Weather resistant)
Trunk (Connects the tree to the ground)	Beacon Attachment (A strong connection to the beacon and transformer)

Forced Analogy

Aircraft Carrier Function	Forced Analogy
Resistant to Ocean Environment (Rain, salty air, waves)	Resisten to Florida's Environment (Rain, salty air, hurricanes)
Control Station (Assesses problems with the ship)	Binary Control (Assess problems with transformer)
Communication System (Communicate with main land)	Beacon System (Communicate a signal to done)
Signal Flags (Communication between ships)	Pop up Flag (Communicate a signal to done)

High Fidelity Design Concepts

Design Concept 1:

Hardware					Software			
Power Source	Binary Input	Attachment Method	Signal Type	Materials	Input Type	Computer Language	Cloud Platform	Algorithm
Transformer	Power	Polyurethane sealant	LED source	Plastic	RGB	Python	Google Al	Yolov5

High Fidelity Design Concepts

Design Concept 2:

Hardware					Software			
Power Source	Binary Input	Attachment Method	Signal Type	Materials	Input Type	Computer Language	Cloud Platform	Algorithm
Transformer	Power	Rivets	External cooling device	Stainless Steel	Infrared	Python	Google Al	Yolov5

High Fidelity Design Concepts

Design Concept 3:

	Hardware					Software				
Power Source	Binary Input	Attachment Method	Signal Type	Materials	Input Type	Computer Language	Cloud Platform	Algorithm		
Transformer	Power	Rivets	Mechanical Flap	Stainless Steel	RGB	Python	Google Al	Yolov5		

Concept Selection Approaches

Binary Pairwise

House of Quality

Pugh Charts

AHP

Binary Pairwise

Inexpensive	Quick Installation	Binary Signal	Non Invasive	Weatherproof	Confidence	Long Lifespan	Compatible With Transformer	Sum
=	1	0	0	0	1	0	0	2
0	325	0	0	0	1	0	0	1
1	1		0	1	1	1	0	5
1	1	1	-	1	1	1	0	6
1	1	0	0	-	1	1	0	4
0	0	0	0	0	-	1	0	1
1	1	0	0	0	0	·=	ol 🗷	2
1	1	1	1	1	1	1	ŧ.	7

Binary Pairwise

From the Binary Pairwise we were able to determine the most important customer needs

House of Quality

		Ho	use of	Quali	ty					
	Units	ft	years	٧	0/1	%	frames/s	%	Mb	hrs
Customer Requirements	Importance Weight Factor	Visibility of Beacon	Bea∞n lifespan	Voltage sufficiently powers beacon	Beaœn is on or off	Model confidence	Model runtime	Notification success	Storage capacity	Installation time
Inexpensive	2		3			9	9		3	3
Quick Installation	1									9
Binary Signal	5	3		9	9		i i			
Non Invasive	6									
Weatherproof	4	3	1							
Confidence	2	9	1	9	9	9	9			
Long Lifespan	1		9							
Compatible With Transformer	7	1		3	3					
Raw Score	334	52	21	84	84	36	36	0	6	15
Relative Weight %		15.57	6.29	25.15	25.15	10.78	10.78	0.00	1.80	4.49
Rank Order		2	4	1	1	3	3	7	6	5

From the importance of the customer needs we also calculated the ranking of importance of our targets and metrics.

Pugh Charts

			Concepts	
Selection Criteria	Concept 2	1	5	6
Voltage sufficiently powers beacon		+	+	S
Beacon is on or off		+	+	s
Visibility of Beacon		2 4 2	+	+
Model confidence	Datum	S	S	s
Model runtime		S	S	s
Beacon lifespan		-	-	s
Installation time		S	+	-
	# of pluses	2	4	1
*	# of minuses	2	1	1
	# of same	3	2	5

	Legend									
1	Transformer-powered plastic LED attached using a polyurethane sealant. Corresponding image recognition system that takes in RGB video uses trained YOLOv5 to make detections									
2	Stainless steel external device that cools with transformer power and is attached with rivets. Computer vision system analyzes infrared videos using YOLOv5									
5	Mount an external LED on the top of a stainless steel lever attached using rivets and powered by the transformer and infrared video input with YOLOv5 algorithm									
6	External cooled rod made of stainless steel (or same metal as transformer) and infrared video input with YOLOv5 algorithm									

Analytical Hierarchy Process (AHP)

				Normalized						
Pairwise Matrix (Normalized)	Visibility of Beacon	Beacon lifespan	Voltage sufficiently powers beacon	Beacon is on or off	Madel confidence	Madel nuntime	Notification success	Storage capacity	Installation time	Criteria Weight (W)
Visibility of Beacon	0.08	0.23	0.03	0.21	0.31	0.16	0.37	0.16	0.19	0.19
Beacon lifespan	0.02	0.05	0.06	0.04	0.13	0.07	0.01	0.16	0.14	0.08
Voltage sufficiently powers beacon	0.75	0.23	0.28	0.21	0.13	0.07	0.37	0.16	0.10	0.26
Beacon is on or off	0.08	0.23	0.28	0.21	0.31	0.16	0.07	0.21	0.14	0.19
Model confidence	0.01	0.02	0.09	0.03	0.04	0.16	0.07	0.12	0.14	0.08
Model runtime	0.01	0.02	0.09	0.03	0.01	0.02	0.01	0.00	0.01	0.02
Notification success	0.02	0.23	0.06	0.21	0.04	0.16	0.07	0.16	0.14	0.12
Storage compacity	0.01	0.01	0.04	0.02	0.01	0.12	0.01	0.02	0.10	0.04
Installation time	0.01	0.01	0.06	0.03	0.01	0.07	0.01	0.00	0.02	0.02
Sum	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1

AHP

For each selection criteria we made a pairwise matrix to compare the final 4 concepts.

The values calculated from each were then input to the final rating matrix.

Final Rating Matrix					
Selection Criteria	1	2	5	6	
Visibility of Beacon	0.31	0.08	0.52	0.08	
Beacon lifespan	0.1	0.37	0.17	0.37	
Voltage sufficiently powers beacon	0.42	0.08	0.42	0.08	
Beacon is on or off	0.22	0.09	0.59	0.09	
Notification success	0.22	0.09	0.59	0.09	
Installation time	0.12	0.41	0.41	0.07	

Selected Concept

	Final Rating	
1		0.2467
2		0.1017
5		0.4127
6		0.0949

Legend	
	Transformer-powered plastic LED attached
	using a polyurethane sealant. Corresponding
	image recognition system that takes in RGB
1	video uses trained YOLOv5 to make detections
	Stainless steel external device that cools with
	transformer power and is attached with rivets.
	Computer vision system analyzes infrared
2	videos using YOLOv5
	Mount an external LED on the top of a stainless
	steel lever attached using rivets and powered by
	the transformer and infrared video input with
5	YOLOv5 algorithm
	External cooled rod made of stainless steel (or
	same metal as transformer) and infrared video
6	input with YOLOv5 algorithm

Selected Concept - Rough Sketch

Lever - down

Lever - up

Selected Concept Pros

Emits a light

Changes shape of transformer

Uses minimal power

Alerts residents of power outage

Selected Concept Cons

Potential mechanical failure

Can be accessed externally

Must drill through transformer

More Design Choices

Distance Factor

Future Work

Currently Here

Summary

- Thank you FPL and NextEra Energy
- Problem Overview
- Concept Generation Methods + Results
- Concept Selection Approach
- Selected Concept
- Upcoming work

Project Scope

FAMU-FSU Engineering

Objective

Develop a hardware beacon that indicates faulted FPL pad mounted equipment, and a method of identifying the beacon with machine vision.

FAMU-FSU Engineering

Hardware Assumptions

Software Assumptions

Photo Library

Identification

Key Goals

Accurate up to 50 feet

Securely Mount

Develop
System to
Identify

Markets

Florida Power & Light services approximately 5.6 million customers

Stakeholders

Florida Power & Light (FPL)

Smart Grid & Innovation

NextEra Energy

Stakeholders

Senior Design Coordinator

Dr. Oscar Chuy

FAMU-FSU College of Engineering

Customer Needs

Customer Needs: Hardware

Weather

Resistant

Customer Needs: Software

Works with pictures

Works with video

Can see through obstructions

Recognizes transformer and beacon

Compatible with AWS

Functional Decomposition

Detection

Communication

Power

Attachment

Detection

Communication

Power

Attachment

Questions?

Reference

Hurst, R. W. "Padmount Transformers Explained." *The Electricity Forum*, Electricity Forum, https://www.electricityforum.com/td/utility-transformers/padmount-transformer.

"FPL | Smart Technology | Drones." FPL, *Florida Power & Light Company*, https://www.fpl.com/reliability/drones.html.

Design Pipeline (Potential Questions)

Standard Shapes

Approved Logos

Color Palette

APA Tables

Category 1	Category 2	Category 3	Category 4	Category 5
Item 1				
Item 2				
Item 3				
Item 4				

	Category 2		Category 3		
Category 1	subcategory 1	subcategory 2	subcategory 1	subcategory 2	
Item 1					
Item 2					
Item 3					
Item 4					